1. SCANDIUM

ROBERT C. FAY

CONTENTS

Intro	oduction	٠																	-				٠	•			٠	1
1,1	Scandiu	m(III)) .															٠				-		٠				1
	1.1.1	Helid	les a	nd h	ale	0-c	OD)le	z e	8							-			٠			٠			•	•	1
	1.1.2	Compl	ехев	wit	b (9-d	one	Œ	11	ge	nds									٠			-					3
	1,1,3	Oxyan	ion	selt	8 (and	1 20 1	Lхе	d-:	me.	tal	0	x10	des	,					-	-							4
	1.1.4	Sulph	ides																									5
	1,1,5	Phosp	bide	s an	d i	Ars	en	lde	8														٠		٠			5
	1.1.6	Organ	omet	alli	с (СОШ	pot	ınd	B															-		٠	•	€
1.2	Scandiu	an(II) مسد					٠.																	٠				6
1,3	Scandia	2m(I)																							•		•	6
	Tences																											

INTRODUCTION

Scandium chemistry continues to be a relatively unexplored area, and only a small number of papers on scandium have been published during 1980. Nevertheless, two review articles have appeared. Komissarova [1] has summarised the chemistry of the Sc^{3+} ion in aqueous solution, focussing on hydration, hydrolysis, polymerisation, and complex formation processes as a function of the scandium concentration, the pH of the medium, and the nature of the ligands. Corbett [2] has reviewed the structural chemistry of reduced binary halides of early transition metals, including such compounds as ScCl_{+} , $\mathrm{Sc}_{5}\mathrm{Cl}_{+}$, and $\mathrm{Sc}_{7}\mathrm{Cl}_{10}$. These compounds exhibit structures in which halide-capped metal octahedra are condensed into infinite chains, double chains, or double metal layers.

The present review covers the major journals for the 1980 calendar year and the lesser known and/or foreign journals for the period covered by Chemical Abstracts, Volume 91, Number 21 through Volume 93, Number 18.

1.1 SCANDIUM(III)

1.1.1 Halides and halo-complexes

The new ternary fluorides Ag_3ScF_6 and $AgScF_4$ have been prepared by heating AgF and ScF_3 at elevated temperatures. Ag_3ScF_6 has a monoclinic structure of 0010-8545/82/0000-0000/\$01.75 © 1982 Elsevier Scientific Publishing Company

the Na₂AiF₆ type, while AgScF₄ has a monoclinic structure which is of a new, unknown structure type [3]. Stability constants for the formation of the fluoride complexes $[ScF_n]^{(3-n)+}$ in aqueous solution have been measured in 0.5 M Na[ClO₄] at 25 °C; values of $log\beta_n$ are 6.18±0.02, 11.52±0.05, and 15.8±0.4 for n=1, 2, and 3, respectively [4].

Gas phase equilibria in mixtures of $ScCl_3$ and $MgCl_2$ have been studied by mass spectrometric measurements on gases energing from Knudsen cells. The following thermodynamic data have been obtained for reactions (1)-(4):

$$0.5 \text{Mg}_2 \text{Cl}_4 + 0.5 \text{Sc}_2 \text{Cl}_6 \longrightarrow \text{MgScCl}_5 \qquad \Delta \text{H}^\circ = -2.9 \text{ kJ mol}^{-1}; \ \Delta \text{S}^\circ = 8.4 \text{ J K}^{-1}$$
 (1)

$$MgCl_2 + ScCl_3 \longrightarrow MgScCl_5$$
 $\Delta H^{\circ} = -191.6 \text{ kJ mol}^{-1}; \Delta S^{\circ} = -118.0 \text{ J K}^{-1}$ (2)

$$Mg_2Cl_4 + SeCl_3 \longrightarrow Mg_2SeCl_7 \quad \Delta H^\circ = -207.1 \text{ kJ mol}^{-1}$$
 (3)

$$MgCl_2 + Sc_2Cl_6 \longrightarrow MgSc_2Cl_8 \quad \Delta H^\circ = -206.7 \text{ kJ mol}^{-1}$$
 (4)

The gas phase complexes $MScCl_5$ have also been observed in the systems $ScCl_3/MCl_2$ (M = Ca, Sr or Ba) [5].

The tetramethylene sulphoxide adduct $[ScCl_3(C_0H_8SO)_3]$ has been prepared and characterised by chemical analysis, IR spectroscopy, conductance measurements, and X-ray powder patterns. The IR spectra indicate that the sulphoxide is coordinated to scandium via the oxygen atom [6]. Complex formation in MeCN solutions of $ScCl_3$ and $ScCl_3 + K[NCS]$ has been studied by " 5Sc NMR spectroscopy [7].

X-ray powder diffraction data indicate that $Cs_3Sc_2Cl_9$ has the $Cs_3Tl_2Cl_9$ -type structure (space group $R\overline{3}e$, a=12.707(2) Å, c=18.117(4) Å) rather than the $Cs_3\{Cr_2Cl_9\}$ -type structure found for the other first-row transition metal compounds, $Cs_3[M_2Cl_9]$ (M=Ti, V, or Cr). The structure of $Cs_3Sc_2Cl_9$ consists of close-packed (Cs+3Cl) layers perpendicular to the c axis with the Sc^{3+} ions in octahedral sites that lie in chains parallel to c. Every third octahedral site is vacant, resulting in $\{Sc_2Cl_9\}^{3-}$ groups that consist of two adjacent $\{ScCl_9\}^{3-}$ octahedra which share a common face [8].

The reaction of ScI, with alkali metal iodides has been studied by differential thermal analysis. One compound, K_3ScI_6 (m.p. 556 °C), has been detected in the ScI₃-KI system, and two compounds, Rb_3ScI_6 (m.p. 602 °C) and $Rb_3Sc_2I_9$ (m.p. 611 °C), have been identified in the ScI₃-RbI system [9]. Among the first examples of iodo elpasolites are the new compounds Cs_2LiScI_6 and Cs_2NaScI_6 , which were prepared by heating mixtures of scandium metal, iodine, and the appropriate alkali metal iodides. Cs_2LiScI_6 has the trigonal Cs_2LiGaF_6 -type structure, while Cs_2NaScI_6 has the cubic K_2NaAIF_6 -type structure [10].

1.1.2 Complexes with O-donor ligands

The hydrolysis of ${\rm Sc}^{3+}$ ions in aqueous solution ([Sc(III)] = (4×10^{-5}) to 10^{-2} M; pH = 1.0 to 5.9), leading to formation of mononuclear and polynuclear hydroxo complexes, has been studied by ion exchange, dialysis, and spectrophotometry. The first hydrolysis constant of [Sc(H₂O)₆]³⁺ is $(1.0\pm0.1)\times10^{-5}$ [11].

The kinetics of tetramethylurea (tmu) and N_1N_2 -dimethylacetamide (dma) ligand exchange on the hexa-coordinated ions $[Sc(tmu)_6]^{3+}$ and $[Sc(tma)_6]^{3+}$, respectively, in CD_3NO_2 and CD_3CN have been studied by NMR line-broadening techniques. In both solvents, tmu exchange follows a first-order rate law, rate = $6k_1[\{Sc(tmu)_6\}^{3+}]$, whereas dma exchange occurs by both first- and second-order paths, rate = $6(k_1 + k_2[dma]_0)[\{Sc(dma)_6\}^{3+}]$. Kinetic data are summarised in Table 1. The

TABLE 1

Kinetic data for ligand exchange on $[ScL_6]^{3+}$ complexes

L	Solvent	k ₁ (300 K)/s ⁻¹	k ₂ (300 K)/l mol ⁻¹ s ⁻¹	$\Delta H^*/kJ \; mol^{-1}$	ΔS [‡] /J K ⁻¹ mol ⁻¹
tmu	CD 3 NO 2	0.26±0.03		91,2±2,3	47.8±6.7
	CD3CN	1.08±0.05		68.6±1,3	-15.7±3.8
dina	CD_3NO_2	4.6 ±0.3		30,3±2,0	-132 ±6
	CD_3NO_2		112±3	26,0±0,6	-119 ±2
	CD ₃ CN	6.7 ±4.2		28.3±5.5	-135 ±26
	CD ₃ CN		199±19	29.0±1.0	-104 ±4

authors attribute the first-order path to a dissociative (D) mechanism involving formation of a five-coordinate $\{ScL_5\}^{3+}$ intermediate, and the second-order path, to an associative (A) mechanism involving production of a seven-coordinate $\{ScL_7\}^{3+}$ intermediate. The difference in mechanism for the tmn and dma complexes is probably due to the greater steric bulk of tmn, which favours the $\{Sc(tmn)_5\}^{3+}$ intermediate over $\{Sc(tmn)_7\}^{3+}$; in the case of the less crowded dma complexes, the $\{Sc(tmn)_5\}^{3+}$ and $\{Sc(tmn)_7\}^{3+}$ intermediates evidently have similar stabilities. NMR spectra of solutions of N,N-dimethylformamide and $\{Sc(tmn)_6\}\{ClO_4\}_3$ in CD_2Cl_2 at temperatures down to 180 K and of solutions of dimethylsulphoxide and $\{Sc(tmn)_6\}\{ClO_4\}_3$ in CD_3NO_2 at 245 K indicate that in these systems ligand exchange is fast on the NMR time scale $\{12\}$.

Pandey et al. [13-15] have measured equilibrium constants for formation of the binary and ternary cheiate complexes $[ScL]^+$, $[Sc(edta)L]^{3-}$, and $[Sc(egta)L]^{3-}$ (eqns. (5)-(7)), where L is a substituted salicylate ligand (3-Mesal, 4-Mesal,

$$Sc^{3+} + L^{2-} \implies ScL^{+}$$
 (5)

$$\left[\operatorname{Sc}(\operatorname{edta})\right]^{-} + L^{2-} = \left[\operatorname{Sc}(\operatorname{edta})L\right]^{3-}$$
 (6)

$$[Sc(egta)]^{-} + L^{2-} = [Sc(egta)L]^{3-}$$
 (7)

5-Clsal, or 3,5-Br₂sal) and egta is the ethyleneglycolbis(β -aminoethylether)tetra-acetate(4-) anion. Measurements were made in 50% (v/v) ethanol-water at 25 °C and μ = 0.1 M (KNO₃); the results are summarised in Table 2.

TABLE 2

Equilibrium data for the formation of some binary and ternary scandium(III) chelate complexes, as defined by equations (5)~(7)

	Log K							
L	Equation (5)	Equation (6)	Equation (7)					
-Mesal	10.41±0.04	6.10±0.07	5.83±0.01					
-Mesal	10.11±0.06	5.95±0.01	5.72±0.01					
3,5-Br ₂ sal	9,68±0.01	5.78±0.02	5,54±0,02					
5-Clsal	9.07±0.03	5.34±0.02	5.21±0.02					

1.1.3 Oxyanion salts and mixed-metal oxides

The reactions which occur upon heating mixtures of Sc_2O_3 and alkali metal persulphates, $M_2\{S_2O_8\}$ (M = Na or K), have been studied by DTA and X-ray diffraction techniques. Sc_2O_3 reacts with the thermally produced alkali metal pyrosulphates to give $Sc_2(SO_4)_3$ (when M = Na) or $KSc(SO_4)_2$ (when M = K), according to equations (8) or (9)). $Sc_2(SO_4)_3$ is stable to 840 °C, at which

$$Sc_2O_3 + 3Na_2S_2O_7 \longrightarrow Sc_2(SO_4)_3 + 3Na_2SO_4$$
 (8)

$$Sc_2O_3 + 3K_2S_2O_7 \longrightarrow 2KSc(SO_4)_2 + 2K_2SO_4$$
 (9)

temperature it begins to decompose to Sc_2O_3 [16].

 $Sc(NH_4)(P_2O_7)$ has been prepared by heating Sc_2O_3 with $[NH_4][H_2PO_4]$ at 250-270 °C; it decomposes at 400-780 °C with stepwise loss of ammonia and water [17]. Coprecipitation of Sc(III) and Sb(III) hydroxides, followed by annealing the mixture at 700-750 °C under argon, produces a pure tetragonal phase of

composition $Sc_2Sb_4O_9$ ($\alpha=10.051~\text{Å}$, c=8.544~Å). Above 800 °C in an inert atmosphere, this compound decomposes to Sc_2O_3 and Sb_2O_3 [18]. Thermal decomposition of scandium formate in a flowing dinitrogen atmosphere at 210-380 °C produces H_2 , CO, CO_2 , Sc_2O_3 , and an intermediate product which is thought to be $Sc_2O_2(CO_3)$ on the basis of IR evidence. The intermediate product decomposes between 380 and 1000~°C to Sc_2O_3 and CO_2 [19].

The composition of hydrated scandium vanadates(V), obtained by mixing $Sc(NO_3)_3$ and Na_3VO_4 solutions, has been investigated as a function of the pH of the Na_3VO_4 solution, the temperature of the synthesis, and the vanadium:scandium ratio. The following compounds were isolated and characterised by chemical analysis, IR and broad-line ¹H NMR spectroscopy, and thermogravimetric analysis: (ScOH)₂V₂O₇.5.5H₂O. Sc₈O₄(OH)₄V₁₀O₂₀.24H₂O, and Sc₅O₂(OH)₅V₁₀O₂₀.25.5H₂O [20].

Vibrational spectra (900-33 cm⁻¹ region) have been published for a number of scandium-containing mixed-metal oxides. The compounds studied include Sc_6WO_{12} [21], $InScO_3$ (In = Ia; Pr, Nd, Sm, Eu, Gd, To, Dy or Y) [22], $BaSc_2O_4$, $Ba_2Sc_2O_5$, and $Ba_3Sc_4O_9$ [23]. In several cases the spectra have been assigned and force fields have been determined on the basis of theoretical calculation. $BaSc_2O_4$ exhibits an anomalously high-frequency Sc-O stretching band ($IR \sim 780 \text{ cm}^{-1}$, $Raman \sim 760 \text{ cm}^{-1}$), which has been interpreted in terms of the presence of five-coordinate scandium [23]. Raman spectra have been reported for single crystals of Sc_2O_3 [24].

1.1.4 Sulphides

The compound ScU_8S_{17} has been prepared by heating a mixture of $16UO_2 + Sc_2O_3$ to 1300 °C in a stream of hydrogen sulphide. ScU_8S_{17} has a monoclinic structure, space group B2/m, in which the scandium atoms are octahedrally coordinated by four sulphur atoms at 2.529(6) Å and two sulphur atoms at 2.446(9) Å; the three sites occupied by uranium are octacoordinated [25].

1.1.5 Phosphides and Arsenides

X-ray powder diffraction studies of the Sc-P and Sc-As system have revealed the existence of several new scandium phosphide and arsenide phases. Two new phases of composition Sc_3P_2 have been identified; both are orthorhombic, space group Pnma, but one is isostructural with Hf_3P_2 while the other is isostructural with Cr_3C_2 . The corresponding Sc_3As_2 polymorphs have also been identified, along with a new phase of composition Sc_3As_2 , which is isostructural with Yb_5Sb_3 [26]. X-ray powder profile refinement of the structure of Sc_3As_2 (Hf_3P_2 -type polymorph) indicates that the As atoms are surrounded by seven scandium atoms at distances ranging from 2.655 to 2.847 Å (average = 2.77 Å) [27].

1.1.6 Organometallic compounds

Mass spectra have been reported for $tris(\eta^5$ -cyclopentadienyl)scandium(III) and its alkyl-substituted derivatives $[(Rcp)_3Sc]$ (R = Et, Pr, or CHMe₂). All of these compounds form fairly stable molecular ions, but the relative intensity of the molecular ion peak decreases with an increase in the number of carbon atoms in the alkyl substituent owing to rearrangements involving loss of ethene or propene [28].

1.2 SCANDIUM(II)

Reduction of $\operatorname{Cs_3Sc_2Cl_9}$ with scandium metal at 695-700 °C affords the blue scandium(II) compound $\operatorname{CsScCl_3}$, which has the $\operatorname{CsNiCl_3}$ structure (hexagonal perovskite, space group $P6_3/mmc$, $\alpha=7.350(2)$ Å, c=6.045(3) Å). The structure of $\operatorname{CsScCl_3}$ is closely related to that of $\operatorname{Cs_3Sc_2Cl_9}$ ($\operatorname{CsSc_{0.67}Cl_3}$), in that both compounds contain hexagonal close-packed (Sc + 3Cl) layers, but the octahedral scandium sites, which are one-third vacant in $\operatorname{CsSc_{0.67}Cl_3}$, are completely filled in $\operatorname{CsScCl_3}$. The close relationship between the two structures permits preparation of nonstoicheicmetric compounds of the type $\operatorname{CsSc_2Cl_3}$ (0.67 < $x \le 1.00$) in which the octahedral scandium sites are partially occupied. The question of whether the scandium vacancies are ordered or disordered has been investigated by X-ray methods [8].

1.3 SCANDIUM(I)

Band calculations on ScCl are in accord with d-band metallic properties [29,30]. This compound has a structure in which two close-packed layers of scandium atoms are sandwiched between close-packed layers of chlorine atoms. The ClScScCl sandwiches stack along the (001) direction of the trigonal crystal [31].

REFERENCES

- L.N. Komissarova, Russ. J. Inorg. Chem., 25 (1980) 75.
- 2 J.D. Corbett, Adv. Chem. Ser., 186 (1980) 329.
- 3 R. Losch and C. Hebecker, Z. Naturforsch. Teil B, 34 (1979) 1765.
- 4 R.D. Hancock, F. Marsicano and E. Rudolph, J. Coord. Chem., 10 (1980) 223.
- 5 K. Wagner and H. Schafer, Z. Anorg. Allg. Chem., 452 (1979) 83.
- 6 W.N. De Lima, An. Acad. Bras. Cienc., 51 (1979) 647 [Chem. Abstr., 93 (1980) 18272].
- 7 Yu.A. Buslaev, G.A. Kirakosyan and V.P. Tarasov, Koord. Khim., 6 (1980) 361 [Chem. Abstr., 92 (1980) 233800].
- 8 K.R. Poeppelmeier, J.D. Corbett, T.P. McMullen, D.R. Torgeson and R.G. Barnes, Inorg. Chem., 19 (1980) 129.
- 9 A.G. Krokhina, A.P. Andrachnikova, A.B. Strekachinskii and V.A. Krokhin, Russ. J. Inorg. Chem., 25 (1980) 901.

- G. Meyer, Z. Naturforsch. Teil B, 35 (1980) 394.
- 11 Yu.P. Davydov and G.I. Glazacheva, Ruse. J. Inorg. Chem., 25 (1980) 812.
- 12
- D.L. Pisaniello and S.F. Lincoln, J. Chem. Soc., Dalton Trans., (1980) 699.
 A.K. Pandey, M. Chandra, B.V. Agarwala and A.K. Dey, J. Indian Chem. Soc., 13 57 (1980) 32,
- A.K. Pandey, M. Chandra, B.V. Agarwala and A.K. Dey, J. Indian Chem. Soc., 14 57 (1980) 227.
- A.K. Pandey, M. Chandra, B.V. Agarwala and A.K. Dey, Indian J. Chem., 15 Sect. A, 19 (1980) 924.
- 16 K.R. Idan and F. Jasim, Thermochim. Acta, 39 (1980) 227.
- Z. Kanepe, A. Dindune and Z. Konstanto, Izv. Akad. Nauk SSSR, Neorg. Mater., 17 15 (1979) 2185 [Chem. Abstr., 92 (1980) 103435].
- 18 B.I. Pokrovskii and Yu.Ya. Mikhailov, Russ. J. Inorg. Chem., 25 (1980) 473.
- Y. Masuda and S. Shishido, J. Inorg. Nucl. Chem., 42 (1980) 299. 19
- L.V. Zaslavskaya, A.P. Nakhodnova and A.S. Mikhailova, Russ. J. Inorg. Chem., 24 (1979) 983.
- V.A. Cagarina, V.V. Fomichev, O.I. Kondratov, K.I. Petrov, L.Z. Gokhmen and 21 E.M. Reznik, Russ. J. Inorg. Chem., 24 (1979) 1029.
- 22 N.V. Porotnikov, O.I. Kondratov and K.I. Petrov, Russ. J. Inorg. Chem., 25 (1980) 682.
- 23 N.V. Porotnikov, O.I. Kondratov and K.I. Petrov, Russ. J. Inorg. Chem., 24 (1979) 1790.
- J. Gouteron, J. Zarembowitch and A.-M. Lejus, C.R. Acad. Sci., Ser. C, 289 24 (1979) 243.
- 25 T. Vovan and N. Rodier, C.R. Acad. Sci., Ser. C, 289 (1979) 17.
- R. Berger, Acta Chem. Scand., 34A (1980) 231. 26
- R. Berger, Acta Chem. Scand., 34A (1980) 463. 27
- G.G. Devyatykh, P.E. Gaivoronskii, E.M. Gavrishchuk, N.P. Chernyaev and 28 Yu.B. Zverev, Russ. J. Inorg. Chem., 25 (1980) 1413.
- 29 J.F. Marchiando, B.N. Narmon and S.H. Liu, Physica, 99B (1980) 259.
- 30 D.W. Bullett, Inorg. Chem., 19 (1980) 1780.
- 31 K.R. Poeppelmeier and J.D. Corbett, Inorg. Chem., 16 (1977) 294.